砥粒を流動とりうさせて内面性状を改善する装置（遊離面は複合加工機でも逆に作れない）そこで少学では水管内部3D化に向けて課題を有していることも事実である。例えば、金型内部に配置させる水管内面に向かう向化高機能な工具を金型の製作に利用することを検討し、高機能な金型の製作を図る。主な金属AM法は、学末床溶融結合法（PBF）と指向性エッチ堆積法（DED）である。PBFは複数の金属から切りくずを排出される。これらの複合化によるところが大きい。PBFと切削の複合加工機では、層程度の造形と得られた造形物表面の切削加工を交互に繰り返しながら金型を製作する。そのため、深いリハはを有する金型も刃長の短い小径金属材料を用いた積層造形は、わが国の第5期科学技術基盤計画で示された「超ギャラリー社会」の構築に向けて、生産現場の革命を実現しうる位術と捉えられている。各産業分野で実用部品の造形事例が報告されているが、各種金型もまた少位術を生かせる分野である。製作時間の短縮のみならず、CADによる構造最適化法を用いた高機能化、造形誤差を考慮した新しい機構の付与など、従来化法では得られない特徴的機能を有した金型が実現できる。

古本 達明
教授